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A new computational approach combining shock tracking and Newton’s method is applied 
to steady one-dimensional flow through a variable area duct. On a transformed computational 
grid where the shock is fixed, the physical shock location appears explicitly as an unknown in 
a set of finite difference equations, and is coupled to the other unknowns. The space-time 
characteristics for the associated time-dependent problem are used in formulating the 
boundary conditions. The resulting system is solved by Newton’s method. The computed 
results agree very well with an exact solution, and the Newton iterates converge rapidly in 
comparison to some explicit shock capturing, time-asymptotic methods. 

1. INTRODUCTION 

This paper presents a new computational approach to certain steady-state problems 
of inviscid fluid dynamics which combines shock tracking and Newton’s method. 
This approach is applied to the model problem of one-dimensional flow in a duct of 
varying cross-sectional area. A common finite difference technique for obtaining 
steady solutions of such problems is the time-asymptotic method. Explicit time 
marching methods which capture shocks are relatively easy to implement, but they 
converge slowly. Increasing the dissipation of a difference scheme by adding an 
artificial viscosity may speed up convergence but excessively smears the captured 
shocks. Various ad hoc procedures such as corrected damping are an attempt to 
accelerate convergence while maintaining a fairly steep shock profile. For one- 
dimensional duct flow van Hove and Arts [ 11, Crocco [2], and others have 
investigated the convergence of the time marching method with respect to different 
difference schemes. Moretti [ 31 has implemented a time-dependent shock-tracking 
procedure for a variety of problems including one-dimensional duct flow. 

An alternative to time marching is to properly pose the steady problem, discretize 
the equations and solve the resulting system using an iterative method. We implement 
such an approach in this paper. As in one of the time-dependent shock-tracking 
methods of Moretti, we define a transformation which maps the duct interval 
(containing the unknown physical shock location) to a computational interval where 
the shock is fixed. On the computational grid the physical shock location appears as 

364 
0021.9991/8l/O20364-11.$02.00/0 
Copyright Cl 1981 by Academic Press, Inc. 
All rights of reproduction in any form reserved. 



STEADY SHOCKTRACKING 365 

an unknown in a set of finite difference equations, and is coupled to the other 
unknowns which are the values of the primitive flow variables at the mesh points. The 
resulting nonlinear algebraic system is solved using Newton’s method. This approach 
implements shock tracking in a particularly simple way and avoids the relatively 
complicated equations and computational logic of time-dependent shock tracking. 
The explicitly determined standing shock wave is superior to the usual captured 
shock since it exactly satisfies the Rankine-Hugoniot jump conditions and is 
perfectly resolved. Newton’s method converges quadratically near the solution and 
proves to be competitive with time-asymptotic method. For the application of 
Newton’s method to shock-free flow in two space dimensions see [4]. 

2. PROBLEM FORMULATION 

A. Continuous Problem 

The unsteady one-dimensional flow in a duct of variable cross-sectional area A(x) 
is described in the physical space 0 <x < x,,, by 

U,+F,+H=O, 

where 

(1) 

and p is density, u is velocity, E = e + (u*/2) where e is specific internal energy, and 
p is pressure. For simplicity, the equation of state is chosen here to be that of a 
perfect gas, p = (y - 1) pe. In the steady-state equations (1) reduce to 

F,+H=O (2) 

which, together with the boundary conditions at x = 0 and x=x,,, formulated in 
Section 2B, comprise the continuous problem which is to be approximated. For 
certain functions A(x) and certain boundary specifications, a, shock stands at some 
location x = s in the duct. Considering s to be an unknown, the mapping 

= 1 + P- 1)(x-s) 
x > & 

X max -s ) 

is defined so that the physical shock location s is mapped into the computational 
coordinate r = 1. Likewise, the inflow location x = 0 and outflow location x = x,,, 
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are mapped into r = 0 and < = k respectively (see Fig. 1). The constant k is defined in 
Section 2C. Equation (2) transforms to 

&F,+H=O (4) 

with appropriate transformed boundary conditions. The unknown s appears both in I& 
and also through A = A (x(& s)) since A must now be evaluated at c = constant in the 
computational space. 

B. Boundary Conditions 

Boundary conditions must be specified at the inflow < = 0, the outflow r = k, and 
also at both sides of the shock <= 1, which is an internal boundary. The present 
approach to deriving these conditions makes use of the time-dependent formulation, 
especially the theory of characteristics for hyperbolic systems. From our point of 
view, the steady-state solution is just a special kind of unsteady solution, and the 
concept of information being propagated along space-time characteristics is retained. 
From this perspective, the characteristic compatibility equations which hold along 
characteristics in the time-dependent problem still hold in the steady state, only they 
transmit the particular information that the solution is not changing in time. This 
would be the situation, for example, when a steady state is reached in a time- 
dependent method of characteristics solution. 

The characteristic slopes and the characteristic compatibility conditions for the 
time-dependent problem are derived in the Appendix. Assuming supersonic inflow, 
subsonic outflow, and a diverging duct with a single shock, the qualitative nature of 
these characteristics at the boundaries of the computational domain is depicted in 
Fig. 2 (other configurations can be treated analogously). At inflow r = 0, three 
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FIG. 1. Physical space x and computational space < with mesh point numbering indicated. 
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FIG. 2. Characteristics at boundaries of computational space for the time-dependent problem. 

characteristics come from outside the computational interval 0 < < < k, indicating 
that three boundary values must be specified at e = 0. These are 

P(t = O) = Pin 3 

u(< = 0) = uin, 

e((=O)=ei,. 

(5) 

At outflow c = k, two characteristics reach the boundary from inside the domain, and 
one from outside. This means that one boundary value must be specified, taken here 
to be 

~$4 = k) = pout . (6) 

The two additional equations needed at e = k are the characteristic compatibility 
equations (A3) and (A5) from the Appendix, with time derivatives dropped. They 
are: 

where c is the sound speed. 
The two sides of the shock, points a and b in Fig. 2, are related by the shock jump 

conditions 

CPU), = @U)b 9 

(P + w2), = (P + PU2),Y (9) 

(e + P/P + u2/2), = (e + P/P + u2/% - 

Additionally, at pre-shock point a, three characteristic compatibility conditions hold; 
these are equivalent in the steady state to the transformed differential equations (4). 



368 SHUBIN, STEPHENS, AND GLAZ 

At post-shock point 6, two characteristics (dashed lines) cross the shock and are thus 
prohibited from carrying information. The characteristic compatibility condition 
corresponding to the one admissible characteristic reaching point b from the interval 
1 ,< r< k is (A4), which becomes in the steady state 

<,(c - u) [ $ - pc $1 - y upc* = 0. 

While it may appear that these seven conditions (Eqs. (9), (lo), and the three 
differential equations at point a) overspecify the shock boundary, it will be seen that 
the “extra” equation (10) is needed to determine the unknown physical shock system 
s. The use of other equations to close the system will be discussed at the end of 
Section 3. 

C. Finite Dlrerence Equations and Solution by Newton’s Method 

A uniform finite difference mesh is used in the computational space, except that 
there are two mesh points at <= 1 which represent the pre- and post-shock states 
(Fig. 1). The mesh points rj are given by rj = (j - l)& for j = 1, Z,...,j, and rj = 
(j - 2) At for j =j, + l,...,j,,, , where A< = l/(j, - 1) and j, and j, + 1 are the pre- 
and post-shock points, respectively. The constant k in (3) is used to select the relative 
computational resolutions of the physical intervals 0 < x < s and s < x <x,,, . The 
variable p is eliminated by using the equation of state, so that the unknowns at each 
mesh point 1 <j <j,,, are pj, UJ, and ej. 

At “interior” mesh points j = 2 ,..., j, - 1 and j = j, + 2 ,..., j,,,,, - 1, Eqs. (4) are 
approximated by the three centered difference equations 

(4) [Fj+l-Fj-ll 
XJ 

244 
+Hj=o. (11) 

At inflow point j = 1, the three inflow conditions (5), namely, pr =pin, U, = Uin, and 
e, = e,, are specified. At outflow point j = j,,,,, , pi,,, = pout is specified, along with 
first-order accurate backward difference approximations of the two compatibility 
conditions (7) and (8). At the pre-shock point j = j,, three backward difference 
equations 

(r 1, LFjMFj-ll 
XJ 

A< 
+Hj=O (12) 

are specified. The jump conditions (9) relate @, u, e),l to @, u, e)jf+ r . Finally, at the 
post-shock point j, + 1, a first-order forward difference approximatton of (10) is used. 
These equations provide N = 3j,,, + 1 algebraic equations in the N unknowns u, , p, , 
elv U29 P29 e2T.-y uj,,, Pj,,,, ej,,,, s (in this order). 

Let v be the vector of unknowns, G(v) = 0 be the system of N nonlinear equations 
in N unknowns, and B(v) be the N X N Jacobian matrix for this system, i.e., 
B, = aG,/&,. A modified Newton’s method for finding the (k + 1) iterate is given by 

B(vk) ’ (vk+’ - vk) = -aG(vk) (13) 
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where a is a “damping factor.” For a = I (usual Newton’s method) if G(v*) = 0 and 
B(v*) is nonsingular then in a neighborhood of v* the iteration converges 
quadratically, i.e., E” Q ,(a”-‘)‘, where the iteration error E is defined by c”+ ’ = 
maxj \r$+’ - $1. However, the initial guess v” must often be close to v* to ensure 
convergence. This guess v” is easily supplied for one-dimensional duct flow, and a 
poor guess can often be improved by taking a < 1 until the “damped Newton” 
iterates are close enough to the correct solution. Furthermore, although Newton’s 
method converges in a few iterations, a linear system must be solved at each iteration. 
For standard Gaussian elimination and a full matrix this usually requires O(N3) 
operations, so that for large N the computational time becomes prohibitive. For one- 
dimensional duct flow the Jacobian has a special structure, being nearly block 
tridiagonal (with some singular diagonal blocks) except for an extra row resulting 
from the compatibility condition (10) at the shock, and an extra column due to the 
unknown shock location s. 

To extend this methodology to multidimensional problems, one may try to take 
advantage of the fact that B(v) is sparse and has a nearly banded structure [4]. Alter- 
natively, one may use a quasi-Newton method IS], or use Newton’s method on 
columns or rows in the computational grid. Since a good initial guess is difficult to 
obtain for multidimensional problems, we are considering a hybrid technique where 
the guess is supplied by a shock-capturing finite difference method. These ideas will 
be explored in future work. 

3. RESULTS 

In this section we present our computational results for the model problem, 
addressing first the question of finite difference accuracy. The problem as formulated 
in Section 2 was solved computationally with j,,, = 16 and 32 mesh points. The 
specified inflow conditions were A,, = 1.050, Pin = 0.502, e,, = 1.897, ain = 1.299 and 
the outflow conditions were A,,, = 1.745, pout = 0.776. The duct cross-sectional area 
A(x) is shown in Fig. 3, and the initial guess for the Newton iteration was taken to be 

J ..>1 1, L 
O0 5 IQ 

X 

FIG. 3. Duct areas A(x), A ,in used in computations. 
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the exact solution for a perturbed duct shape A ,in. (This problem with a duct much 
like A ,in was solved by Crocco [2] using a time-asymptotic shock-capturing method). 
For the present problem an exact solution can be computed, and in this exact solution 
a shock stands at A = 1.347, x = s,,,,~ = 4.8 16. The computational results for density 
obtained using 16 and 32 mesh points are compared with the exact solution in Figs. 
4a,b. The shock jump conditions are, of course, always identically satisfied by the 
computed results, although for a shock whose position, and hence strength, is slightly 
in error. This error in shock position, defined as (s,,,,~ - s,,,,,~~,~~)/s~~~~~, is rather 
small, being 0.028 and 0.005 forjmax = 16 and 32, respectively. Indeed, the computed 
results with 32 mesh points are virtuafiy indistinguishable from the exact solution. 
These results may be favorably compared with shock capturing results (e.g., [ 1 ] and 
[2]) or with time-dependent shock-tracking results [3]. 

The question of computational efftciency will now be discussed. Defining the 
iteration error as in Section 2C, the above computation with a = 1 and E’ N 10-l 
converges quadratically to s5 N lo-i3 (machine accuracy) in five iterations. This 

0 8- b’*n*m” 
a 

I -EXACT SOLUTION 

FIG. 4. Density vs. position for the exact and computed solutions with (a) 16 and (b) 32 mesh 
points. 
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computation takes about 6 set of CDC 6500 computer time for j,,, = 32 when 
Gaussian elimination with partial pivoting is used to solve (13). Like others (e.g., 
161) we observe that the number of iterations needed to converge to a specified error 
tolerance is largely independent of the number of mesh points. While it is generally 
expected that solving an N x N linear system will take O(N3) time, we observe O(N’) 
for our particular system, probably due to the sparsity and structure of the particular 
Jacobian matrix B(v). 

In order to make a very rough comparison between the efficiencies of the time 
asymptotic method and the present approach, the explicit finite difference methods of 
MacCormack [ 71 and Lax [ 81 were used to obtain shock-capturing, time-asymptotic 
solutions of this problem using the same initial guess. These time-asymptotic 
computations used 32 mesh points and a time step equal to 0.9 of that allowed by the 
CFL stability criterion (i.e., max(( u ( + c) At/Ax = 0.9). At the downstream boundary 
pout was specified and compatibility conditions (A3) and (A5) were used. We believe 
that the computational efficiencies for these two methods, the first being mildly 
dissipative and the second highly dissipative, are likely to bracket those for most 
explicit time-asymptotic methods, including time-dependent shock tracking. In Fig. 5 
the iteration error E is plotted versus CDC 6500 computer time for both time- 
asymptotic methods and for the present tracking method. Computation time was 
chosen as the standard of comparison because the time asymptotic method requires 
many iterations with little time per iteration, while Newton’s method requires few 
iterations but takes more time per iteration. The mildly dissipative MacCormack 
scheme converges only when a small amount of artificial viscosity is added (like that 
in [ 1, p. 20]), and gives a solution with a slightly oscillatory captured shock at 
approximately the correct location. The highly dissipative Lax scheme converges 
fairly rapidly but yields a very smooth solution without recognizable shock structure 
(see [ 11). Steady shock tracking with Newton’s method is more efficient than either 
of these time-asymptotic methods and gives the very good results of Fig. 4b. 

Next we examine the convergence of the Newton iterations when the initial guess is 
less accurate than above. In this case the method is found to converge to a solution of 
the steady difference equations by taking a small (-0.1) for the first few iterations 
(giving linear convergence) and then switching to a = 1. However, when the initial 
guess was taken to be that used by Crocco [2], namely a shock-free solution with the 
downstream condition pout suddenly imposed, the Newton iterates with j,,, = 16 
converged to the “spurious” solution shown in Fig. 6. This computed solution is a 
bona fide solution of the difference equations, but is one which we believe violates the 
entropy condition [9] at the spurious jump in the region upstream of the tracked 
shock. Many time asymptotic methods which do not specifically enforce the entropy 
condition can also converge to such spurious solutions (e.g., [lo]). In the present 
context, these spurious solutions are readily identifiable. When the converged 
spurious solution is perturbed to nearly agree with the correct difference solution, and 
this is taken as an initial guess, Newton’s method converges to the correct solution 
(i.e., the one satisfying the entropy.condition, Fig. 4a). 

Finally we consider the choice of Eq. (10) as the Nth equation which closes the 
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FIG. 5. Iteration error E versus CDC 6500 computer time for 32 mesh point solutions obtained with 
the steady-tracking method and the time-asymptotic shock-capturing methods of MacCormack and Lax. 
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f 

FIG. 6. Density versus position for the “spurious” solution obtained with the initial guess of Crocco 

121. 

algebraic system. This choice was based on the time-dependent shock tracking 
formulation, where only one of the characteristics is admissible (the others cross the 
shock; dashed lines in Fig. 2) and where use of inadmissible characteristic infor- 
mation usually leads to instability. While according to the philosophy outlined at the 
beginning of Section 2B the time-dependent characteristics have meaning for a steady 
solution, it is also possible to look directly at the steady-state formulation (without 
reference to the time-dependent problem) in which such space-time characteristics are 
meaningless. While it is difficult to resolve this paradox, it is certainly possible that 
some other condition applied at the post-shock point will work equally well in the 
steady formulation. Indeed, we have obtained results of accuracy comparable to those 
presented above by replacing Eq. (10) with the mass conservation equation (first 
component of Eq. (4)) using first-order accurate forward differencing at j = j, + 1 
(and with other formulations as well). 
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APPENDIX: DERIVATION OF CHARACTERISTIC COMPATIBILITY CONDITIONS 

Some background on characteristic compatibility equations can be found in [ 111. 
Consider Eqs. (1) and the time-dependent transformation < = ((x, t), T = t. Equations 
(1) transform to 

Define Q = @, U, e)‘. Then Eq. (Al) is equivalant to 

Q, + W + Wo) Q, + Eo = 0, 642) 

where C = [W/aQ], D = [aF/aQ], D, = C’D, E, = C-l{ [(dA/dx)/A] F + H}. 
Specifically, 

where k, = (a~/+), , k, = (8P/ZJe), . 
The characteristic matrix for Eq. (A2) is 

u 4P 0 
A*@,, 4) = 4Z+ U,Z + &Do) = k,A,/p 0 Wdp > 

0 A,PlP u 1 

where u = /ii + /i, U, A, = 1, + A,<,, II, = A,<, . The characteristic condition is 
det A* = u(a’ - A:c*) = 0 where c2 = k, + k2pJp2 is the square of the speed of 
sound. Corresponding to the three characteristic conditions ui = 0, u2+3 = fA2c are 
the three left null vectors (defined by IA* = 0) I, = (-p, O,p*), I,,, = (-kIu2,,,pA2c2, 
-k,u,,,). The three characteristic compatibility conditions are obtained by left 
multiplying Eqs. (A2) by I,, I,, and 1,. They are: 

(A31 

-u g + pc2A2g + (-aq + c*A,&) $ 

Wk 
+pc’(--or,+A2q)$--- up& = 0, 

(A419 (W 

where q = cl + u{, and where u = u2, u = uJ for Eqs. (A4), (A5), respectively. 
The slopes of the characteristics in the (r, 7’) plane are given by dt/dT = q, 

q ‘f tl,c. These slopes play a crucial role in formulating the boundary and shock con- 
ditions. 
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